Point de fonctionnement

1. Un panneau photovoltaïque dont la caractéristique est représentée sur le document réponse alimente un récepteur (*figure 1*).

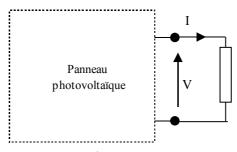


Figure 1.

- 1.1 A partir de la carctéristique du panneau solaire, déterminez :
 - sa tension à vide $V_V =$
 - son courant de court-circuit $I_{CC} =$
- 1.2 Tracez, sur le document réponse, les caractéristiques des résistances R_A = 1 Ω , R_B = 5 Ω et R_C = 10 Ω .

Le panneau solaire alimente tour à tour les résistances R_A, R_B et R_C.

1.3 Déterminez les coordonnées des 3 points de fonctionnement A, B et C:

 \bullet $V_A =$

 $V_{\rm B} =$

· W_ -

• $I_A =$

 $I_{\rm B} =$

; $I_C =$

 \bullet $P_A =$

 $P_{\rm B} =$

; $P_C =$

Le point de maximum de puissance (MPP) se trouve au point D.

1.4 Déterminez $V_D =$

 $I_D =$

 $P_D =$

1.5 Quelle résistance R_D branchée aux bornes du générateur permtrait de tirer le plus de puissance de celui-ci ?

$$R_D =$$

2. Le panneau photovoltaïque alimente à présent une batterie qu'il recharge. Le modèle électrique de la batterie est représenté par une fem E = 12 V en série avec sa résistance interne $r = 0.4 \Omega$ (figure 2).

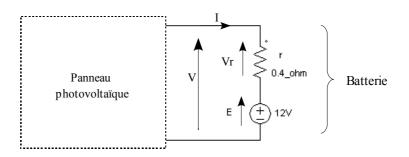


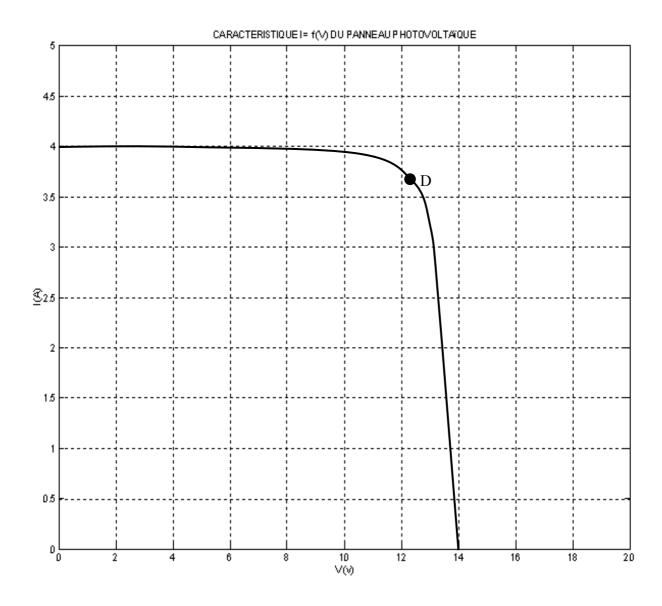
Figure 2.

2.1 Exprimez la tension Vr en fonction de I.

- Vr =
- 2.2 En déduire l'expression de V en fonction de E, r et I.
- V =
- 2.3 Tracez alors la caractéristique V(I) de la batterie sur le document réponse.
- 2.4 En déduire le point de fonctionnement :

$$V_{BAT} = I_{BAT} =$$

2.5 Calculez alors la puissance P fournie à la batterie par le panneau solaire.


$$P_{BAT} =$$

La batterie a une capacité de 15 A.h. Elle est initialement à 20% de sa charge.

2.6 Calculez le temps t_C qu'il lui faudra pour se recharger entièrement.

DOCUMENT REPONSE

NOM:

