Flores d'intérêt industriel

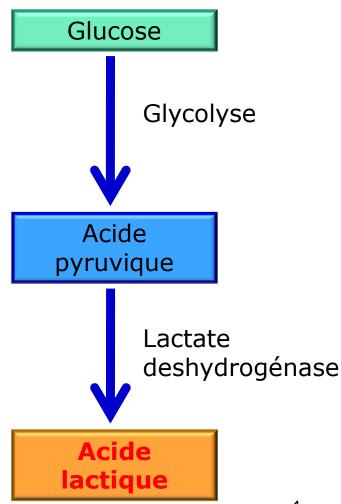
Bactéries lactiques

- 1. Définition
- 2. Fermentations lactiques
- 3. Taxonomie
- 4. Ecologie
- 5. Applications biotechnologiques
- 6. Phages lactiques

1. Définition : bactéries lactiques

Définition de Orla-Jensen (biochimiste Danois) posée en 1919 :

→ genres bactériens capables de fermenter les glucides en produisant de l'acide lactique (сн₃-снон-соо-)

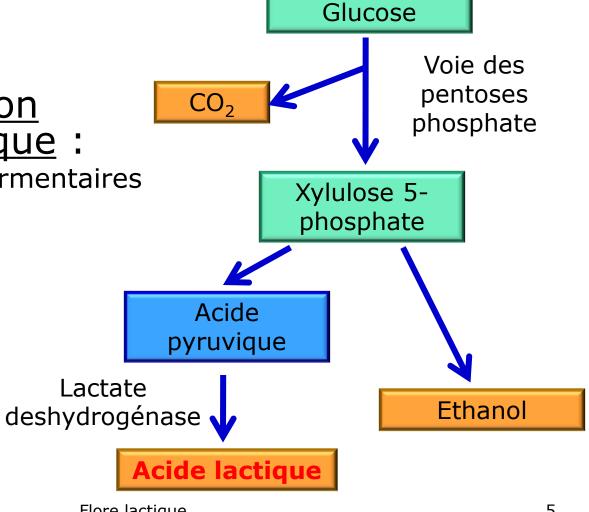

2. Fermentations lactiques

Deux types de fermentations lactiques :

Fermentation homolactique :

bactéries homofermentaires

Produit: acide lactique uniquement


2. Fermentations lactiques


Fermentation hétérolactique :

Bactéries hétérofermentaires

Produits:

- acide lactique
- CO₂ (gaz)
- éthanol
- parfois autres acides

Fermentations lactiques

3. Taxonomie

Caractères phénotypiques communs :

- Bactéries Gram + coques ou bacilles
- Bactéries immobiles (généralement) et non sporulées
- Bactéries anaérobies aérotolérantes :
 - <u>Métabolisme exclusivement fermentatif</u>: absence de cytochromes donc inaptitude à toute respiration
 - <u>Tolérance à l'O₂</u>: absence de catalase mais présence d'une péroxydase
- Bactéries polyauxotrophes :
 - Capacité de biosynthèse faible
 - Exigence pour acides aminés, bases nucléiques, vitamines, acides gras

3. Taxonomie

Caractères phénotypiques communs :

Bactéries non pathogènes

Caractères génétiques communs :

- Homogénéité du GC% : entre 32 et 53%
 Exception de Bifidobacterium GC% plus élevé
- Séquences de l'ARN 16S proches : même groupe phylogénétique

3. Taxonomie

12 genres dont les principaux sont :

Genres	Forme	Arrangement	Fermentation	ADN GC%
Lactobacillus	Bacilles	chainettes	Homo- hétérolactique	32-53
Streptococcus	Coques	chainettes	Homolactique	34-46
Lactococcus	Coques	chainettes	Homolactique	34-36
Leuconostoc	Coques	chainettes	Hétérolactique	36-43
Oenococcus	Coques	chainettes	Hétérolactique	38
Pediococcus	Coques	tétrades	Homolactique	34-42
Bifidobacterium	variée	variée	Hétérolactique et acétique	<u>55-67</u>

- Bacilles groupés en chaînettes
- Acidifiant le lait lentement et intensément (résistance à pH =3,5)

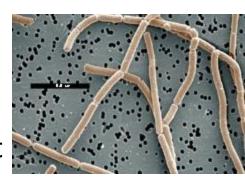
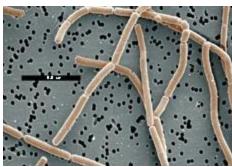
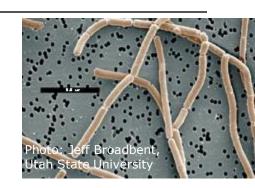


Photo: Jeff Broadbent, Utah State University

- Exigeants en facteurs de croissance
- Classés en 3 sous genres par Orla-Jensen (1919):
 - I. Thermobacterium: homofermentaire et thermophile
 - II. Streptobacterium : homofermentaire et mésophile
 - III. Betabacterium : hétérofermentaire et mésophile ou thermophile

Classification actuelle basée sur :




Photo: Jeff Broadbent, Utah State University

- Type fermentaire
- Forme et arrangement des cellules
- Etudes moléculaires : peptidoglycane, LDH...
- Comparaison génétique : ARN 16S, hybridation ADN-ADN

• 3 groupes :

Groupe	I	II	III
Cellules	Longues en palissades	Courtes en filaments	Courtes séparées
Fermentation	Homofermentaires	Homofermentaire (hexoses) Hétérofermentaires (pentoses)	Hétérofermentaires
Produits	Lactate	Lactate Lactate + acétate + CO ₂	Lactate + acétate ou éthanol + CO ₂

Différentes espèces appartenant au genre *Lactobacillus*

Groupe I

- Lb delbrueckeii
 - subsp. delbrueckeii
 - subsp. *bulgaricus*
 - subsp. *lactis*
- Lb acidophilus
- Lb gasseri
- Lb helveticus

Groupe II

- Lb casei
 - subsp. *casei*
 - subsp. pseudoplantarum
 - subsp. tolerans
 - subsp. rhamnosus
- Lb sake
- Lb bavaricus
- Lb plantarum

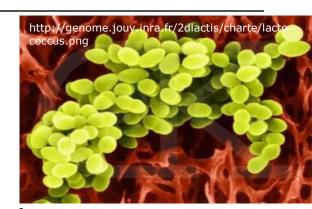
Flore lactique

Groupe III

- Lb bifermentans
- Lb brevis
- Lb buchneri
- Lb kefir
- Lb reuteri
- Lb fermentum
- Lb confusus
- Lb viridescens
- Lb sanfrancisco

3. Taxonomie: Streptococcus

- Coques en chaînettes
- Non pathogènes pour l'homme et les animaux


- Homofermentaire
- 1 seule espèce :

Streptococcus thermophilus caractérisée par :

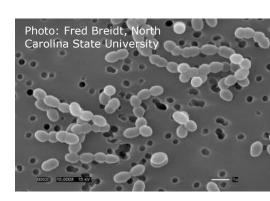
- une croissance optimale entre 42-43°C
- une thermo résistance à 60°C,
- l'absence d'antigène de Lancefield,
- une activité fermentaire réduite à quelques sucres
- une forte sensibilité au NaCl

3. Taxonomie: Lactococcus

 Genre proche de Streptococcus : anciens streptocoques lactiques mésophile

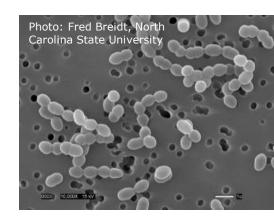
- Coques en chainettes (parfois allongés)
- Croissance optimale entre 20 et 30°C (minimale à 10°C)
- Non thermorésistants
- Caractérisés par l'antigène de Lancefield de groupe N
- Homofermentaire

3. Taxonomie: Lactococcus

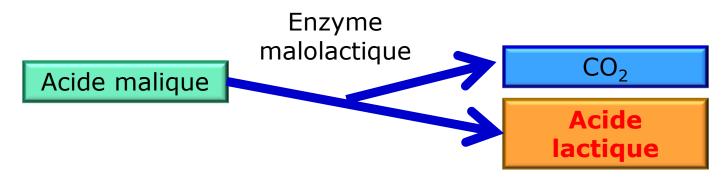

Espèces appartenant au genre Lactococcus :

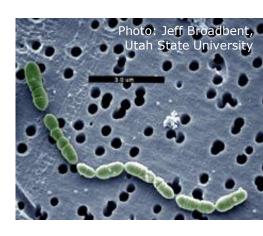
- Lactococcus lactis avec trois sous espèces
 - subsp lactis
 - biovar *diacetylactis*
 - biovar xylosus
 - subsp cremoris
 - o subsp hordniae
- Lactococcus garviae
- Lactococcus plantarum
- Lactococcus raffinolactis

3. Taxonomie: Leuconostoc


- Coques en paires ou chaînettes
- Mésophiles (optimum : 20-30°C)
- De métabolisme hétérofermentaire :
 - Acide lactique
 - Éthanol
 - \circ CO₂
- Produisant
 - o du diacétyle à partir de citrate
 - o des dextranes et levanes à partir de saccharose

Taxonomie

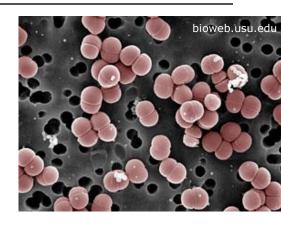

Espèces appartenant au genre Leuconostoc


- Leuconostoc mesenteroïdes avec trois sous espèces
 - o subsp *mesenteroïdes*
 - subsp dextranicum
 - subsp cremoris
- Leuconostoc lactis
- Leuconostoc paramesenteroïdes

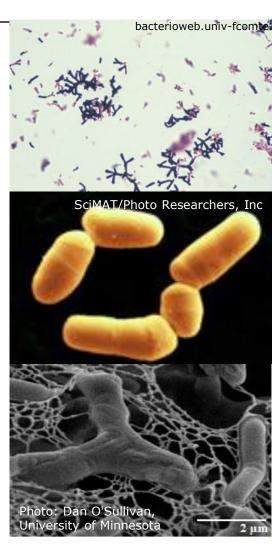
3. Taxonomie: Oenococcus

- Proches des Leuconostoc : ancien Leuconostoc oenos
- 1 seule espèce : Oenococcus oeni
- Coques en chainettes
- Hétérofermentaire (fermentation malolactique):

3. Taxonomie: Pediococcus


- Coques en paires ou tétrades
- Ayant des exigences nutritionnelles
- Faible activité protéolytique
- Homofermentaire
- Espèces se différencient par
 - o leur tolérance:
 - à la température
 - au pH
 - au NaCl
 - leur spectre fermentaire (souvent incapables de fermenter le lactose)

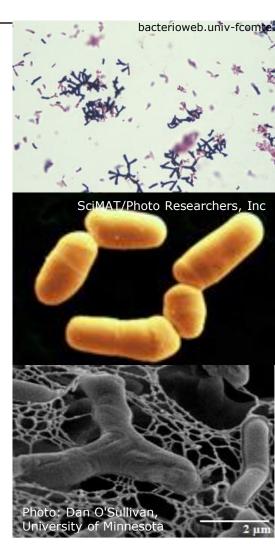
3. Taxonomie: Pediococcus


Principales espèces appartenant au genre *Pediococcus*

- Pediococcus acidolactici
- Pediococcus damnosus
- Pediococcus pentosaceus
- Pediococcus dextrinicus
- Pediococcus parvulus
- Pediococcus inopinatus
- Pediococcus halophilus
- Pediococcus urinaequi

4. Taxonomie: Bifidobacterium

- De forme très variable :
 - o coccoïde,
 - o allongée avec protubérances,
 - bifurcations,
 - o extrémités spatulées
- Arrangement en chaînettes étoilées, en V ou en palissade



Flore lactique

4. Taxonomie: Bifidobacterium

• Produisant :

- Acide acétique ▷▷
- Acide lactique
- Acide formique, éthanol et acide succinique
- Anaérobies stricts
- Mésophiles (optimum 37 41°C)
- Ne supportant pas les pH acides (inférieurs à 5 – 4,5)

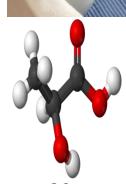
4. Taxonomie: Bifidobacterium

Espèces de Bifidobacterium

- B. bifidum
- B. longum
- B. infantis
- B. breve
- B. adolescentis
- B. angulatum
- B. catenulatum
- B. pseudocatenulatum

- B. dentium
- B. globosum
- B. pseudolongum
- B. cuniculi
- B. choerinum
- B. animalis
- B. thermophilum
- B. boum

- B. magnum
- B. pullorum
- B. suis
- B. minimum
- B. subtile
- B. coryneforme
- B. asteroïdes
- B. indicum


4. Ecologie

Genre	Habitat
Lactobacillus	Végétaux, lait, muqueuses humaines et animales
Streptococcus	Lait
Lactococcus	Lait, végétaux, (rumen)
Leuconostoc	Lait, végétaux (fruits et légumes), muqueuse intestinale
Oenococcus	Végétaux (fruits)
Pediococcus	Végétaux, lait, muqueuse intestinale
Bifidobacterium	Muqueuses humaines et animales

5. Applications biotechnologiques:

- Elaboration d'aliments
- Biopréservation
- Rôle de probiotiques
- ✓ Production de molécules d'intérêt industriel ou médical

Types d'utilisation:

- Artisanale :
 - Levains empiriques (ex : pieds de cuves)
 - Ensemencement naturel (ex : choucroute)

o Industrielle :

- Souches pures
- Mélanges de souches
- Choisies pour leur propriétés microbiologiques

Ferments utilisés pour :

- leur capacité à transformer l'aliment : pouvoirs acidifiant, protéolytique, lipolytique
- leur capacité à produire des arômes : pouvoir aromatisant

- Rôles des ferments :
 - Espèces acidifiantes :
 - acidification
 - · protéolyse de la caséine
 - Ex: Lc. lactis subsp cremoris Lc. lactis subsp lactis

- Production de diacétyle, d'éthanol, d'ac.acétique, de protéases et de lipases ⇒ arômes.
- Ex: Lc. lactis subsp diacetylactis, Leuconostoc, Lb. bulgaricus, S. thermophilus

- Différents types de ferments :
 - Ferments mésophiles:
 - Bactéries : Lactococcus, Ln. cremoris, Lb.casei, Lb. plantarum

- Fromages frais (Féta...)
- Fromages à pâte molle (camembert...)
- Fromages durs à pâte pressée (gouda...)
- Fromages à pâte persillée (roquefort...)
- Lait fermentés et Kéfir

- Différents types de ferments :
 - Ferments thermophiles:
 - Bactéries : S. thermophilus, Lb. acidophilus Lb.delbrueckii, Lb. lactis, Lb.helveticus

- Utilisation: souvent sous forme d'associations
 - Yaourt (S. thermophilus, Lb.bulgaricus)
 - Fromages à pâte cuite (gruyère, parmesan...)
 - Laits fermentés

- Proto-coopération : stimulation mutuelle mais non obligatoire de la croissance
- □ Protéolyse par Lb. bulgaricus
 ⇒ acides aminés et peptides stimulant S. thermophilus
- □ Production d'acide formique et de CO_2 (à partir de l'urée) par S. thermophilus ⇒ stimulation de la croissance de Lb. bulgaricus
- Rapport de concentration des 2 espèces pour un bon yaourt :
 1/1
 - prédominance S. thermophilus \Rightarrow yaourt sans arôme
 - prédominance Lb. bulgaricus ⇒ yaourt trop acide

Elaboration de produits carnés :

- Elaboration de saucissons, bacon...
- Ensemencement naturel et/ou artificiel
- Espèces bactériennes :
 - Lactobacillus sakei (présent naturellement sur la viande)
 - Leuconostoc mesenteroïdes
 - Lactobacillus curvatus
 - Pediococcus pentosaceus (surtout utilisé aux USA)

Mode d'action :

- Production de la texture, la couleur, la flaveur
- Inhibition des flores d'altération et pathogènes (acidification, bactériocines)
- Diminution de la rétention d'eau ⇒ déshydratation

Fermentation de végétaux :

 Fermentation naturelle par les bactéries présentes en surface des végétaux

Applications :

- Choucroute : Lactobacillus, Leuconostoc, Pediococcus
- Autres légumes : concombres, olives...
- Pains au levain : Lactobacillus, Leuconostoc, S.thermophilus

Fermentation de végétaux :

- Applications :
 - Fermentation malolactique des vins :
 - Oenococcus oeni
 - Mise en jeu après la fermentation alcoolique (sucres consommés)
 - Recherchée dans la vinification en rouge
 - Intérêts :
 - diminution de l'acidité totale
 - stabilisation : ↓ risque d'altération
 - diminution de l'astringence (sensation de dessèchement en bouche)

5. Applications biotechnologiques : biopréservation

Définition :

 méthode de conservation des aliments

- pulvérisation de microorganismes protecteurs en surface de l'aliment
- ou utilisation d'un produit de leur métabolisme

Domaines d'application:

 Tout aliment frais conservé sous vide ou atmosphère contrôlée

Essentiellement les viandes et produits de la mer

Mécanismes d'action:

- Barrière biologique par développement en surface
- Compétition par rapport au substrat
- Production de bactériocines ou autres molécules inhibant les pathogènes et la flore d'altération

Exemple d'application:

- Conservation des produits de la mer
- Société Biocéane (St Herblain)
- Souche commercialisée (ferment LLO) :
 - Espèce : Lactococcus lactis
 - Isolée de la chaire de saumon
 - Psychrotrophe : se développe à T° de réfrigération
 - Ne se développe pas à 30°C (pas d'interférence avec les contrôles qualité microbiologiques)
 - Ne produit pas de bactériocine mais une molécule inhibitrice de nature glucidique ou lipidique

Exemple d'application:

- Résultats des tests :
 - Ralentissement du développement de la flore mésophile

- Inhibition de Listeria monocytogenes
- Efficacité variable selon la teneur en glucide de l'aliment

+	-
Saumon	Lieu noir
Crevettes colombiennes	Crevettes africaines
Viandes	

- Pas de modification du gout du produit
- □ DLC augmentée : ex Crevettes cuites sous vide 7j. → 15j.

Autres exemples d'application :

Bactérie	Produits	Effets
Lactococcus lactis MM217	Fromage Cheddar	↓ de la population pathogène de 3 log à 8°C
Pediococcus acidilactici	Saucisson	réduction de 1,6 à 2,5 log la flore de contamination
Leuconostoc gelidium UAL 18	Viande emballée	Retarde le développement de la flore d'altération
Carnobacterium divergens (ancien Lactobacillus)	Saumon fumé	Inhibition de <i>Listeria</i> <i>monocytogenes</i>

Source: M. Federighi & H. Prévost, www.vet-nantes.fr

Définition :

- préparation bactérienne
- généralement à base de bactéries lactiques intestinales
- utilisée sous forme revivifiable
- utilisée à des fins nutritionnelles et/ou thérapeutique

Bactéries lactiques les plus utilisées:

- Lactobacillus:
 Lb. acidophilus, Lb. casei, Lb. delbrueckii ...
- Streptococcus thermophilus
- Bifidobacterium
 B. bifidum

Caractéristiques des bactéries probiotiques:

- Résistance :
 - aux enzymes digestives
 - au pH acide de l'estomac
 - aux sels biliaires
- Eventuellement capacité d'adhérence à la muqueuse intestinale
- Absence de pathogénicité et d'effet cariogène

Données d'utilisation:

Action renforcée par l'addition de lait,
 protéines et de glucides fermentescibles

- Associations éventuelles : protection de Bifidobacterium contre les dérivés toxiques de l'O₂ par S.thermophilus
- O Dose minimale thérapeutique très élevées 10^9 - 10^{10} cellules $\Rightarrow 10^6$ cellules/g dans l'intestin

Effets nutritionnels et thérapeutiques :

- o <u>amélioration de l'intolérance au lactose</u> :
 - par digestion du lactose par la lactase bactérienne
 - par stimulation de la lactase intestinale

o <u>raccourcissement et prévention des gastro-entérites</u> :

- le yaourt ou des préparations de Lactobacillus :
 - o diminuent la durée des gastro-entérites virales
 - o protègent les nourrissons contre le risque de diarrhée
- mécanismes :
 - par augmentation de la réponse spécifique IgA contre les virus
 - o par « rééquilibration» de la flore intestinale

Effets nutritionnels et thérapeutiques :

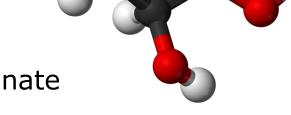
- prévention de la rechute des maladies inflammatoires de l'intestin :
 - Essais chez patients atteints de pochite récidivante
 Pochite : complication d'une anastomose iléo-anale (inflammation)
 - Consommation du probiotique VSL#3 :
 4 Lactobacillus, 3 Bifidobacterium, 1 Streptococcus
 - Survie de certaines souches jusque dans les selles
 - Rechute chez :
 - 100% du groupe placebo
 - 15% du groupe traité

Effets nutritionnels et thérapeutiques :

- o effets positif dans les allergies :
 - Essais non concluants chez l'adulte
 - Efficacité clinique de Lactobacillus observé dans l'eczéma atopique du nouveau né

Effets nutritionnels et thérapeutiques :

autres effets possibles mal démontrés :

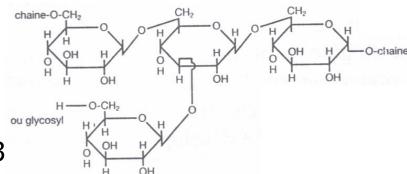


- accélération du transit intestinal (Lb. acidophilus)
- protection contre des bactéries pathogènes (Salmonella, E.coli)
- activité anti-cholestérolémiante (montré chez le rat)
- protection contre le cancer du colon et de la vessie

5. Applications biotechnologiques : production de molécules d'intérêt industriel ou médical

Production d'acide lactique

- ✓ Structure : H₃C-CHOH-COO⁻
- ✓ Production : Lb. bulgaricus
 Lb. delbruecki
 immobilisés dans des billes d'alginate


- ✓ Fermentation : 6-7 jours \rightarrow rendement de 80-90%
- 40 000 tonnes / an
- Utilisations :
 - Industrie agroalimentaire essentiellement : additif E270 acidifiant, antioxygène, exhausteur de gout
 - Industries pharmaceutique et cosmétique (10% de la production)
 - Industries du cuir, des textiles, du plastique (solvant)

Flore lactique

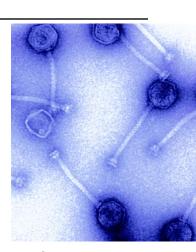
5. Applications biotechnologiques : production de molécules d'intérêt industriel ou médical

Production de dextranes

- Homopolymère du glucose
 - liaisons α 1-6
 - branchements α 1-4 ou α 1-3

- ✓ Sécrété par Leuconostoc mesenteroides : couches mucoïdes
- Utilisations:
 - fabrication de gels de chromatographie: Séphadex[©]
 - additif dans le plasma sanguin
 - enrobage protecteur pour les graines de céréales,
 - stabilisation et l'épaississement des sirops
 - agent défloculant (industrie du papier)
 - récupération assistée de pétrole

6. Phages lactiques

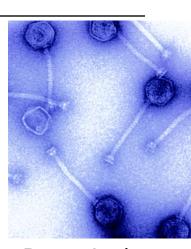

- Rappel : bactériophage = virus spécifiques des bactéries
- Phages virulents ou tempérés spécifiques de chaque espèce

Spectre :

- étroit (1 ou 2 souches)
- large (plusieurs dizaines de souches)

Origine des contaminations :

- lactosérum des industries laitières
- matériel
- lait cru (certains phages virulents de Lc. lactis)
- lysogénie avec réactivation d'un prophage présent dans le génome d'une bactérie lactique

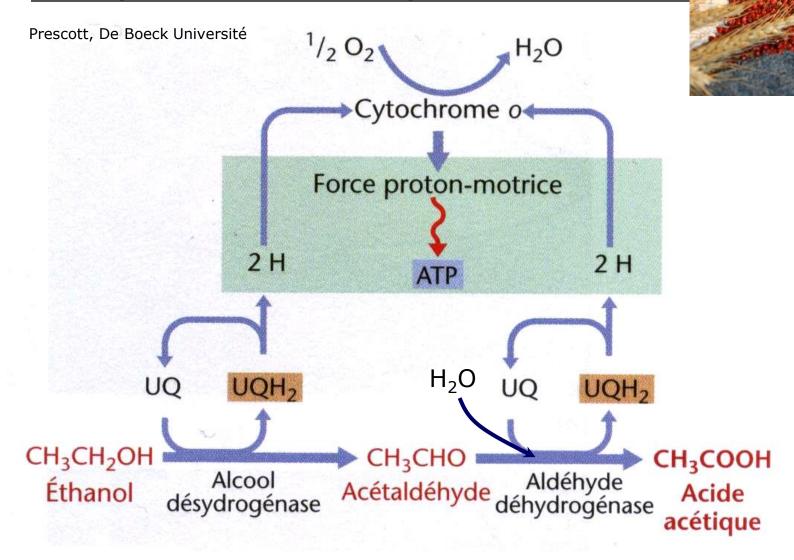

Lactococcus
lactis
bacteriophage
TP901-1, 2005,
American Society for
Microbiology

6. Phages lactiques

 Cycles de durée variable mais en moyenne de 50 min.

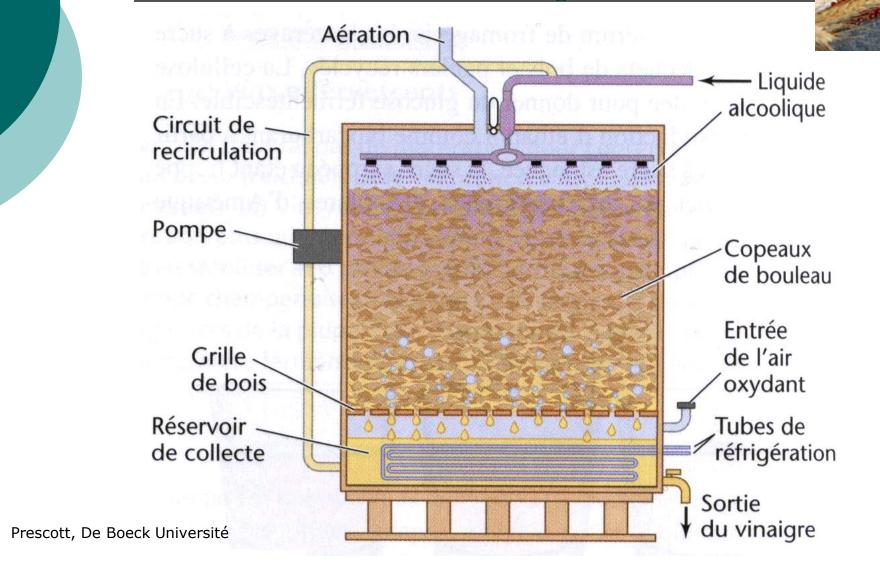
Conséquences :

- ⇒ lyse bactérienne plus ou moins importante (possibilité de destruction totale d'une culture pure)
- ⇒ arrêt de l'acidification ⇒ empêche le caillage (possibilité de destruction complète d'une production)
- Prévention : ferments à souches multiples
 = mélanges de souches à sensibilité aux phages différente



Bacteriophage
TP901-1 de
Lc. Lactis,
American Society for
Microbiology

Bactéries acétiques


Respiration acétique

Mère de vinaigre

Générateur de vinaigre

Mycètes

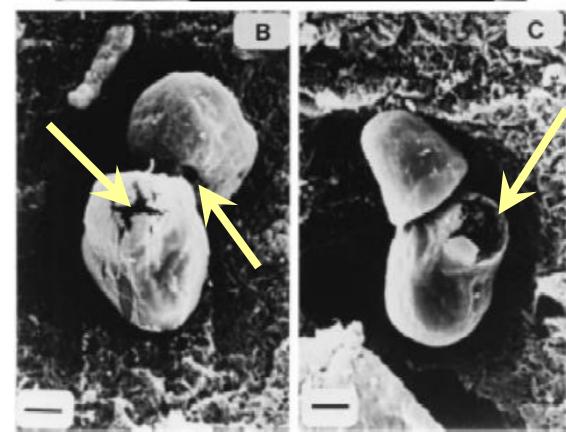
Levures industrielles : applications et caractéristiques

Applications	Caractéristiques	Genres
Boulangerie	 Vitesse de croissance la plus élevée possible Qualité aromatique 	Saccharomyces cerevisiae
Brasserie	 Fermentation rapide Résistance à l'éthanol Résistance à la pression osmotique Profils aromatiques équilibrés 	Saccharomyces cerevisiae
Elaboration des vins et alcools	 Résistance à l'éthanol (et SO₂) Production d'esters et de glycérol Production d'un facteur killer 	Ex : Kloeckera, Saccharomyces cerevisiae Rmq : spécificité des souches pour chaque terroir

Levures industrielles : applications et caractéristiques

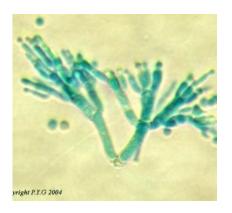
Applications	Caractéristiques	Genres
Fromages	 Tolérance au sel (salage des fromages) Activité lipolytique Production d'arômes 	Kluyveromyces lactis Kluyveromyces fragilis Kluyveromyces bulgaricus S.cerevisiae Candida versatilis
Rôles: Métabolisent l'ac.lactique ⇒↑ pH ⇒ ↑ bactéries ⇒ maturation	Fromages persillés : Kluyveromyces ⇒ CO ₂ ⇒ formation de cavités ⇒ développement P.roquefortii	Zygosaccharomyces rouxii

Levures industrielles : applications et caractéristiques


Applications	Caractéristiques	Genres
Levures aliments	 Métabolisme 	Kluyveromyces
	respiratoire intense	Candida
→ additifs alimentaires	et fermentaire faible	Pichia
		Rhodotorula
→ développement sur	 Richesse en 	
mélasse, lactosérum,	protéines, vitamines	
effluents de papeterie	du groupe B, ac.gras	
	insaturés	

Effet des toxines killer sur des levures sensibles

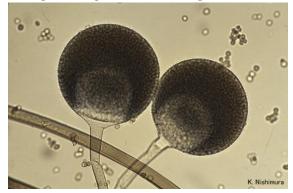
A A


S: levure normale

R : levure endommagée par la toxine K2

Moisissures

Penicillium roquefortii

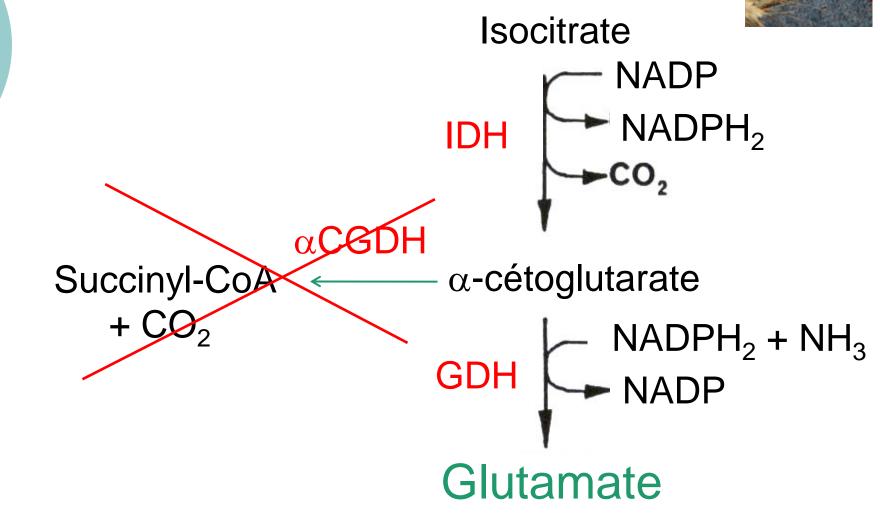

Geotrichum candidum

Aspergillus niger

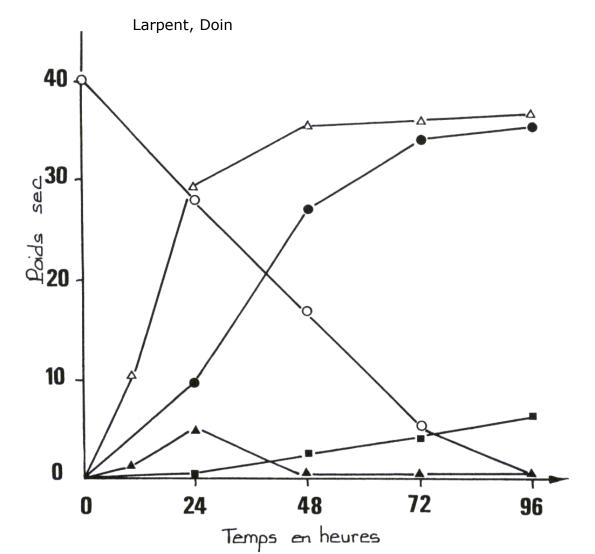
Rhyzopus oryzae

Production de molécules d'intérêt

Production de métabolites primaires


Métabolites	Microorganisme	Utilisation
Acides aminés : Glutamate	C.glutamicum	Exhausteur de gout
Acides organiques : ac. acétique ac. citrique	Acetobacter aceti A.niger	Vinaigre Antioxydant, acidulant
Biofuel éthanol	S.cerevisiae	Biocarburant, solvant
Polysaccharides dextranes, alginates	L. mesenteroïdes	Gélifiant
Enzymes Amylase β-glucanase Pectinases	B. subtilis, A. niger B. subtilis, A. niger A. niger	Production glucose Brasserie Clarifications

Production d'ac.aminés : voies de synthèse



Glucose Glucose-6-phosphate Ribose-5 phosphate Histidine Érythrose-4-3-Phosphoglycérate Sérine phosphate Glycine Phosphoénolpyruvate Cystéine Tryptophane Alanine Phénylalanine Pyruvate Valine Tyrosine Leucine Citrate Oxaloacétate α-Cétoglutarate Glutamate Aspartate Asparagine Méthionine Glutamine Thréonine Proline Lysine Arginine Isoleucine

Production d'ac.glutamique

Production d'ac.glutamique

o---- Glucose (g/L)

△---- Poids sec (g/L)

Glutamate (g/L)

Lactate (g/L)

■ αcétoglutarate (g/L)

Production de L-glutamate par Corynebacterium glutamicum n° 541, cultivé sur glucose comme source de carbone.

Production de métabolites secondaires

Métabolites	Microorganisme	Utilisation	
Antibiotiques Pénicilline	P. Chrysogenum (mycète)	Thérapie antibactérienne	
Autres médicaments Cyclosporine Ergotamine	Tolypocladium inflatum Claviseps purpurea (mycètes)	Immunosuppresseur Antimigraineux	
Arômes Méthylphénylacétate	Trametes odorata (mycète)	Gout miel	
Insecticides Toxine	B. thurengiensis (bactérie)		
Hormones végétales Gibberellines	Phaecospheria (mycète)		

Milieu de culture utilisé pour la production de pénicilline

- Glucose et saccharose (5-10%)
- Corn steep liquor (5-9%) = eau de trempage du maïs dans laquelle 6% de la matière sèche du maïs a diffusé.
- Pharmamedia® (3-5%) = protéines globulaires non hydrolysées
- o Craie (0-1%)
- Sulfate d'ammonium (0-1%)
- Phosphates (0-0,5%)
- Huile (0,3-0,8%)
- Acide phénylacétique (0,3-0,6%) : permet une production de Pénicilline G uniquement sans autres métabolites proches

Procédé de purification de la pénicilline

Filtration de la culture

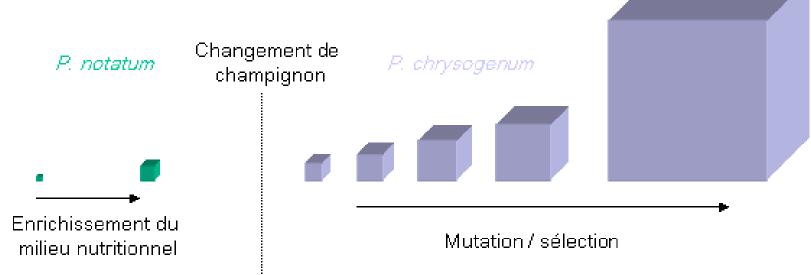
Précipitation de la pénicilline par l'acétate de butyle

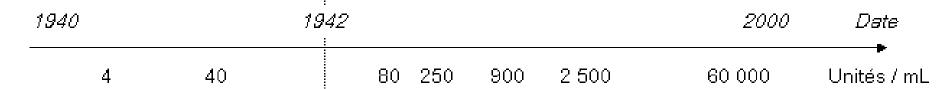
Centrifugation

Extraction à l'ac.phosphorique

Elimination des impuretés et pigments (charbon actif)

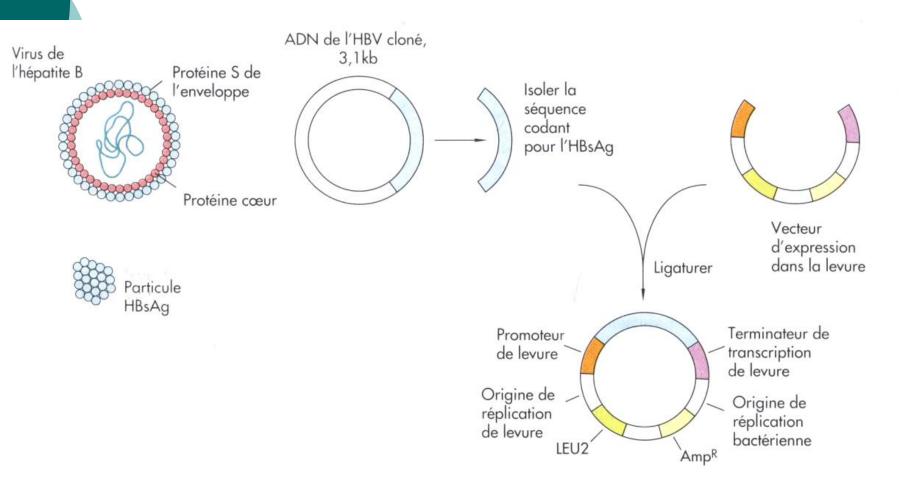
Cristallisation à l'acétate de sodium


Lavage


Séchage

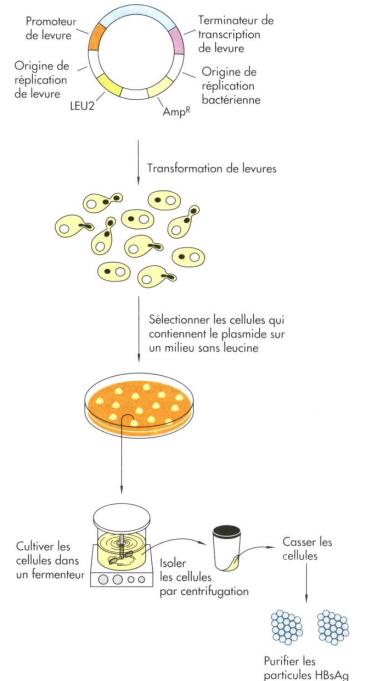
Evolution des souches productrices de pénicilline

Biotransformations


Réaction	Microorganisme	Substrat	Produit
Phosphorylation hydrolyses	Aspergillus orizae, spores de Fusarium semitectum	Pénicilline G ou V	ac. aminopenicillique (précurseur de synthèse chimique de nouvelles pénicillines)
Hydroxylations	Aspergillus Rhyzopus Bacillus Streptomyces	Stéroïdes - désoxycholate de la bile, - stigmastérol du soja	Stéroïdes à visées anti-inflammatoire (dexaméthasone), contraceptive (progestérone), anabolique (testostérone)
	Alcaligenes eutrophus	L-phénylalanine	L-tyrosine
Oxydation	Corynebacterium ATCC 15570	Naphtalène	ac.salicylique

Exemples de protéines hétérologues produites par des microorganismes recombinants

Protéines produites	Microorganisme producteur
Insuline humaine	E.coli
Hormone de croissance humaine	E. coli
Vaccin anti-HBV	Saccharomyces cerevisiae
Interleukine 6 humaine	E.coli
Hémoglobine humaine	Saccharomyces cerevisiae


Production du vaccin anti-HBV

construction du plasmide recombiné

Production du vaccin anti-HBV

phase de production

Aspects industriels des productions de ferments et de métabolites

Sélection et amélioration : exemple des ferments lactiques

Critères de sélection :

- Pouvoir acidifiant
- Production d'arômes
- Production de bactériocines : test à l'encontre
- Résistance aux phages
- Production d'exopolysaccharides : aptitude texturante
- Rôle probiotique
- Production de CO₂
- Résistance aux antibiotiques

Sélection et amélioration : exemple des ferments lactiques

Exemple de test d'évaluation du pouvoir acidifiant :

- Inoculation d'un lait : souche en fin de croissance exponentielle, 10⁷ UFC/mL
- Mesure du pH en temps réel ⇒ 4 variables permettant de caractériser les souches :
 - ΔpH après 6 heures d'incubation
 - o temps nécessaire pour obtenir un pH de 5,5
 - vitesse d'acidification maximale V_m
 - o temps auquel V_m est observée.
- Essais réalisés sur :
 - o souches pures, mélanges de souche
 - o différents types de lait (vache, brebis, chèvre)

Sélection et amélioration

Amélioration des souches :

Techniques :

- Mutagenèse (UV, intercalants)
- Fusion de protoplastes
- Transfection de plasmides recombinés
- Transduction par phages lysogènes

Exemples de résultats:

- ↑ de l'activité lactase : Lc. lactis, Lb. casei, S. thermophilus
- † de l'activité exoprotéase : Lc. lactis
- ↑ de la résistance aux phages : Lc. lactis
- ↑ de la production de bactériocine : Lc. lactis
- † de l'activité protéolytique ou acidifiante (mutagenèse) :
 Lb. delbrueckii, Lb. plantarum, Lb. casei

Techniques	Inconvénients
Conservation à température ambiante ou à 4°C	 Mutations et perte des propriétés initiales Mortalité élevée pour certains microorganismes Inadaptée
Repiquages successifs → milieux pauvres recouverts d'huile minérale → maintien d'un métabolisme réduit pour limiter le risque de mutation	 Mutations et perte des propriétés initiales Inadaptée pour de nombreux microorganismes (utilisée néanmoins pour certaines moisissures)

Conséquences de repiquages successifs de Streptomyces griseus sur la production de streptomycine et sur la capacité de sporulation

Nombre de repiquages	Production en % de streptomycine	% de colonies non sporulantes
1	100	0,5
2	77	5
3	67	6
4	49	26
5	21	33
6	21	36
7	4	65
8	3	88
9	2	93
7	67 49 21	26 33 36 65 88

Techniques	Avantages	Inconvénients
Dessiccation		
 → étalement d'une culture sur supports inertes (sable, bandes de papier,) → déshydratation par chaleur sèche ou anhydride phosphorique 	 Simplicité Pas d'équipement sophistiqué Adaptée pour les microorganismes délicats ne supportant pas la congélation 	Risque de mutation qui reste plus élevé qu'en congélation ou en lyophilisation.

Photo: Maria ZAKIR HOUSSEN

Techniques	Avantages	Inconvénients
 Lyophilisation → déshydratation par sublimation sous pression réduite → agents protecteurs contre les altérations cellulaires : lait écrémé, albumine 	Conservation très longue (> 30 ans) si les cellules sont protégées : - de l'O ₂ - de la lumière - de l'humidité (ampoules scellées sous vide)	 Altérations cellulaires (phénotype, génotype) nécessitant un contrôle des propriétés de la souche Remise en culture longue (phase de latence importante)

Techniques	Avantages	Inconvénients
Congélation		
 → -20, -80, -196°C → importance d'une baisse progressive et lente en T°C (1 à 10 °C) par min. ⇒ efflux d'eau par osmose ⇒ limite les cristaux intracellulaires (cryostat, boite en polystyrène) → Agents cryoprotecteurs : glycérol, sucres, DMSO (diméthylsulfoxyde), PEG (polyéthlène glycol), 	Conservation très longue Risque de mutation faible surtout à -80°C et -196°C	 Formation de cristaux de glace peut léser les enveloppes cellulaires et provoquer la mort cellulaire Risque de perte de la banque de souche en cas de panne de congélateur (sécurités nécessaires)

Bibliographie

→ Livres:

- ❖ Microbiologie industrielle : les microorganismes d'intérêt industriel, LEVEAU et BOUIX, Tec&Doc 1993
- ❖ Bactéries lactiques et probiotiques, LUQUET et CORRIEUX, Tec&Doc 2005
- ❖ Biotechnologies : principes et méthodes, LARPENT, Doin 1992
- ❖ Microbiologie, PRESCOTT, De Boeck Université 1995

Bibliographie

→ Articles, conférences, sites internet :

- ❖ Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking, Mills et Coll., FEMS Microbiology Reviews 29 (2005) 465–475
- ❖ Effets des bactéries lactiques ingérées avec des laits fermentés sur la santé, DROUAULT et CORTIER, Vet. Res. 32 (2001) 101-117
- ❖ Bactéries lactiques et qualité des fromages, DESMAZEAU, Laboratoire de recherches laitières INRA Jouy-en-Josas 1998
- ❖ Site de l'école vétérinaire de Nantes : <u>www.vet-nantes.fr</u>
- Conférence de l'entreprise Biocéane au congrès de l'UPBM, Rezé 2004