Séance 1 : les glucides

Etre capable de mobiliser des connaissances sur les glucides

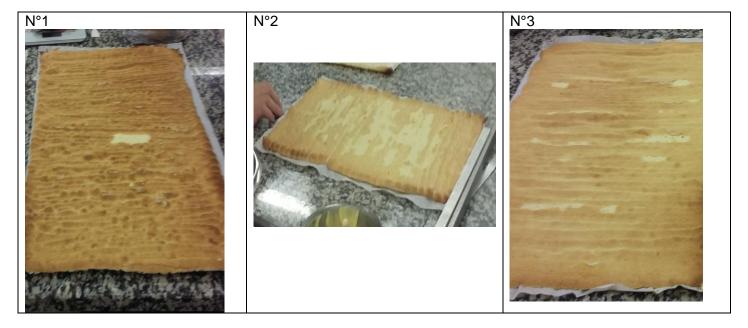
- Expliquer les modifications physico-chimiques des glucides à partir d'un protocole de fabrication (états physiques, changements d'états, solubilité, diffusion, suspension).
- Nommer la nature des transformations subies par les glucides (action de la température, réaction de Maillard).
- Indiquer les incidences organoleptiques et nutritionnelles sur les produits finis contenant des glucides.
- Justifier les précautions à prendre lors de la fabrication des produits contenants des glucides.
- Différencier les glucides rapides et lents.
- Indiquer le rôle des glucides.

Situation professionnelle : vous avez fabriqué vendredi une pâte à biscuit et une crème au beurre afin de réaliser des bûches. Nous allons revenir sur la cuisson des pâtes à biscuit afin de comprendre les différentes transformations physico-chimiques subies par les glucides. Nous pourrons ainsi analyser les incidences organoleptiques et les précautions à prendre lors d'une future fabrication.

Activité 1 : A partir du protocole de fabrication du biscuit en annexe 1 :

- Compléter le tableau ci-dessous en indiquant :
 - les différents ingrédients
 - le groupe d'aliments auxquels ils appartiennent
 - o les principaux constituants alimentaires de ces groupes

Ingrédients	Groupes d'aliments	Principaux constituants alimentaires
Sucre cristal	Produits sucrés	Glucides simples
Jaunes d'œufs	VPO	Protides fer
Farine	Les féculents	Glucides complexes Fibres Vitamine B
Blancs d'œufs	cs d'œufs VPO Protid	
Sucre semoule	Les produits sucrés	Glucides simples


Annexe n°1 - LE BISCUIT

FORMULE			
INGREDIENTS	QUANTITE	PROCEDE	
Sucre (cristal)	400 g	Blanchir le sucre et les jaunes.	
Jaunes	20	Détendre avec un peu de blancs montés	
Farine	500 g	Ajouter la farine sans travailler	
Blancs montés	20	Incorporer les blancs montés.	
Sucre (semoule)	100 g	Dresser sur feuilles ou sur plaques farinées.	
		Pour biscuit chocolat, 100 g de cacao poudre. Pour biscuit praliné, 200 g de praliné	
		EMPLOIS : Fonds de petits gâteaux, entremets, roulés, bûches, biscuits à la cuillère	

Activité 2 : Après cuisson des biscuits, voici les résultats :

Photos des 3 pâtes (cuisson)

Pour chaque pâte :

- indiquer l'aspect, la couleur, la texture
- indiquer les paramètres qui ont permis la coloration de la pâte à biscuit après cuisson
- établir une conclusion en cochant la bonne réponse

	Aspect, texture, couleur	Paramètres qui influencent la cuisson	Classement
N°1	Pâte de couleur brune, marron Aspect fragile, cassant, craquant, texture dure, friable	La tampáratura	□ pâte insuffisamment cuite □ pâte trop cuite □ pâte conforme aux résultats attendus
N°2	Pâte couleur jaune, très claire Aspect fragile, moelleux, tendre Texture molle	La température Le temps de cuisson La ventilation du four La préparation des ingrédients	□ pâte insuffisamment cuite □ pâte trop cuite □ pâte conforme aux résultats attendus
N°3	Pâte d'une belle couleur dorée Aspect spongieux Texture souple		□ pâte insuffisamment cuite □ pâte trop cuite □ pâte conforme aux résultats attendus

Activité 3 : A partir des images ci-dessous, indiquer les principales modifications organoleptiques et nutritionnelles lors de la cuisson d'une pâte à biscuit.

Qualité nutritionnelle Qualité sanitaire Qualité organoleptique LES CINQ SENS La digestibilité La destruction des La couleur La concentration en constituants microorganismes sensibles à la La saveur L'odeur alimentaires chaleur. La texture La perte nutritionnelle au niveau La production de molécules nocives si la cuisson est mal pour rendre la pâte des vitamines par exemples appétissante et maitrisée. savoureuse

Activité 4 : A partir de votre expérience de vendredi, citer les précautions à prendre lors de la cuisson d'une pâte à biscuit, afin d'obtenir un résultat de qualité.

- bien suivre la recette et les consignes du professeur
- respecter les dosages et les techniques
- faire attention à la température du four (réglage du thermostat)
- contrôler régulièrement le temps de cuisson...

Activité 5 : Indiquer les modifications physico-chimiques lors de la cuisson du biscuit

D'après sites internet : http://www.observatoire-des-aliments.fr et http://lesotlylaisse.over-blog.com/article-qu-est-ce-que-la-reaction-de-maillard-49276030.html

Document 1 - La réaction de Maillard :

Pour faire simple, la réaction de Maillard est une réaction chimique entre des acides aminés et des sucres (glucose), contenus dans les aliments.

Cette réaction intervient dès qu'il n'y a plus de molécule d'eau en surface des aliments et se traduit par une coloration plus ou moins brune, elle suppose donc une température assez élevée, environ 110/115°C. Elle permet d'apporter de la couleur et d'enrichir le goût de certaines préparations. C'est la coloration que l'on voit à la surface du biscuit.

Le nom de cette réaction chimique, vient du chimiste qui a étudié cette réaction : Louis Camille MAILLARD (1878-1936)

Document 2 - La caramélisation :

La caramélisation est une technique culinaire qui consiste à faire réagir du saccharose et de l'eau en chauffant le sucre au-delà de son point de fusion (186°C), de sorte qu'il acquière une couleur brune sans qu'il soit brûlé ou carbonisé. C'est une polymérisation du sucre. (Assemblage de plusieurs molécules identiques afin d'en former une plus grosse)

C'est le processus par lequel on fabrique le caramel, d'où son nom.

Plus la température et le temps de la réaction sont élevés, plus le brunissement sera important.

L'effet de la chaleur provoque l'hydrolyse du saccharose (sucre), qui produit des sucres réducteurs, les liaisons se "font" et se "défont", entraînant l'apparition de nouvelles molécules, et synthétisant des sucres complexes Au cours de ce processus, des centaines de composés de saveurs sont créés.

Le saccharose devient par hydrolyse un sirop de fructose et de glucose.

A partir des documents 1 et 2, répondre aux questions suivantes :

Indiquer ce qui se passe lors de la caramélisation.

Au-delà du point de fusion, le sucre prend une coloration brune, il y a polymérisation du sucre.

Les liaisons se font et se défont, ce qui entraine la formation d'une molécule plus complexe

• Citer les constituants alimentaires qui permettent la réaction de Maillard.

Les glucides et acides aminés (protides)

Expliquer le but de la réaction de Maillard.

Cette réaction a pour but de donner une coloration plus ou moins importante aux pâtes à biscuit et de développer les saveurs et arômes des préparations afin améliorer le goût.

Activité 6 : Les propriétés, les modifications physico-chimiques et leurs applications en techniques professionnelles

		EXPERIENCES	OBSERVATIONS	CONCLUSIONS et APPLICATIONS EN TP
Etat physique	Glucides simples ou composés	Observer du sucre en poudre	C'est une poudre blanche, cristallisée qui peut être compactée en morceaux. Les cristaux sont durs, blancs et transparents.	
	Glucides Complexes	Observer de la farine	C'est une poudre blanche de couleur mate, avec un grain très fin.	
Solubilité	Glucides simples ou composés	Verser du sucre en poudre dans de l'eau chaude et remuer Verser du sucre en poudre dans de l'eau froide et remuer Augmenter la quantité de sucre dans l'eau froide	Le sucre en poudre se dissout plus vite dans l'eau chaude. Le sucre tombe au fond du récipient	Le sucre est soluble dans l'eau. La solubilité augmente avec la chaleur. Application culinaire : si on chauffe une grande quantité de sucre avec de l'eau on obtient un sirop.
	Glucides Complexes	Chauffer ce mélange Verser de la farine dans de l'eau et remuer Laisser reposer	Le sucre se dissout Formation d'un liquide blanc = le lait d'amidon. La farine tombe au fond	La farine n'est pas soluble dans l'eau, on obtient une suspension.

Diffusion	Glucides simples ou composés	Gouter une poire fraîche et une poire au sirop. Indiquer la différence de saveur entre les deux.	La poire au sirop est plus sucrée.	Le sirop pénètre dans le fruit et concentre les sucres. Application culinaire : fruits au sirop
A ation do la	Glucides simples ou composés	Faire chauffer du sucre dans une petite quantité d'eau.	Il devient blond, puis brun plus coloré.	Il y a une caramélisation. Application culinaire: réaliser un sucre boulé, un caramel. Remarque: si l'action est prolongée, il y a carbonisation.
Action de la - chaleur humide	Glucides Complexes	Mélanger de la farine à de l'eau et faire chauffer.	Le liquide s'épaissit.	Il y a formation d'un empois d'amidon. Application culinaire: Crème pâtissière, sauce béchamel
Action de la chaleur sèche	Glucides Complexes	Mettre de la farine dans une casserole et faire chauffer.	La farine devient blonde puis marron.	C'est la dextrinisation de l'amidon qui change de structure et de saveur = réaction de Maillard Application culinaire : toutes les pâtisseries

Activité 7 : Différencier les glucides rapides (ou simples) et les glucides lents ou (complexes)

A partir du document 1, souligner les différentes catégories de glucides et compléter le tableau cidessous

Document 1 La classification des glucides

Les glucides sont constitués d'un ou plusieurs cycles d'atomes de carbone reliés entre eux par des liaisons glucidiques. Il existe trois catégories de glucides alimentaires : les oses ou monosaccharides comme le glucose et le fructose, les disaccharides comme le saccharose et le lactose, et les polysaccharides comme l'amidon (contenu dans la farine, les légumes secs...) et la cellulose (fibre alimentaire contenue dans les fruits et légumes). Les propriétés des glucides dépendent de la longueur de leur chaîne moléculaire.

Source manuel: Nutrition Alimentation Nathan Technique

Catégories	Nom des glucides et structures moléculaires	Sources	Types de glucides	
Monosaccharides ou oses	Glucose – C6H12O6 HOCH2 HOCH2 HOCH2 HOCH2 HOCH2 HOCH2 HOCH2 HOCH3 OH Symbole Fructose - C6H12O6	Fruits Miel	Glucides simples ou glucides	
	HOCH ₂ HOCH ₂ OH Symbole	confiture		
Disaccharides ou diholosides	Saccharose - C12H22O11 Liaison osidique	Sucre de table	rapides	
	Lactose - C ₁₂ H ₂₂ O ₁₁	lait		
Polysaccharides ou polyholosides	Amidon — (C6H10O5)n n = 200 à 2000 molécules de glucose	Farine, pâtes, riz, légumes secs (féculents)	Glucides complexes ou glucides lents	
	Cellulose – (C6H10O5)n	Fruits et légumes		

n = 200 à 14000 molécules de glucose + de la pectine		
Glycogène — (C6H10O5)n n = 200 à 1500 molécules de	Réserve énergétique de glucides des organismes animaux présente dans le foie et les muscles	

Activité 8 : Indiquer le principal rôle des glucides dans l'organisme.

Les glucides sont indispensables au fonctionnement des muscles et du cerveau. Ils constituent la source d'énergie la plus rapidement utilisable par l'organisme (glucides simples). Les glucides ont donc **un rôle essentiellement énergétique**.

1 gramme de glucide fournit 17 kJ (kilojoules)

Apportés par l'alimentation, les glucides sont dégradés en glucose lequel va se répartir dans l'organisme. Une partie est stockée sous forme de glycogène dans le foie et les muscles ce qui servira de **réserve**. (Voir cours sur la digestion)

