Exercice guidé – Une suite auxiliaire

On considère la suite (u_n) définie, pour tout e naturel n, par:

$$u_0 = 1 \text{ et } u_{n+1} = \frac{5u_n}{2u_n + 5}$$

On admet que, pour tout entier $n \ge 0$, $u_n > 0$.

- **1.** a. Déterminer u_1 ; u_2 et u_3 .
- **b.** La suite (u_n) est-elle arithmétique ?
- c. Calculer $\frac{1}{u_0}$; $\frac{1}{u_0}$; $\frac{1}{u_0}$ et $\frac{1}{u_0}$. Que constate-t-or
- 2. Soit (v_n) la suite définie sur \mathbb{N} par $v_n = \frac{1}{u}$.
- **a.** Montrer que (v_n) est une suite arithmétique.
- b. En déduire une expression de v_n , puis de u_n , en tion de n. $u_1 = \frac{5u_0}{2u_0+5} = \frac{5}{2+5}$ $u_2 = \frac{5u_0}{2v_1+5} = \frac{5x\frac{5}{x}}{2x\frac{5}{x}+5} = \frac{5x\frac{5}{x}}{2v_1+5} =$

115 1. a.
$$u_1 = \frac{5}{7}$$
; $u_2 = \frac{5}{9}$ et $u_3 = \frac{5}{11}$
b. $u_2 - u_1 = \frac{5}{9} - \frac{5}{7} = -\frac{10}{63}$ et $u_3 - u_2 = \frac{5}{11} - \frac{5}{9} = -\frac{10}{99}$

Donc $u_2 - u_1 \neq u_3 - u_2$. La suite n'est donc pas arithmé-

c.
$$\frac{1}{u_0} = 1$$
; $\frac{1}{u_1} = \frac{7}{5}$; $\frac{1}{u_2} = \frac{9}{5}$ et $\frac{1}{u_3} = \frac{11}{5}$.

On constate que $\frac{1}{u_1} - \frac{1}{u_0} = \frac{1}{u_2} - \frac{1}{u_1} = \frac{1}{u_3} - \frac{1}{u_2} = \frac{2}{5}$.

Ainsi, la suite (v_n) est arithmétique de raison $r = \frac{2}{5}$ et de terme initial $v_0 = \frac{1}{u_0} = 1$.

b. Pour tout $n \in \mathbb{N}$, $v_n = v_0 + n \times r = 1 + \frac{2}{5}n = \frac{5 + 2n}{5}$.

Or
$$v_n = \frac{1}{u_n} \Leftrightarrow u_n = \frac{1}{v_n} \Leftrightarrow u_n = \frac{5}{5+2n}$$
.

YneN

or $V_n = \frac{1}{u_n} \text{ down } u_n = \frac{1}{V_n}$

donc
$$\forall n \in \mathbb{N}$$
, $\Delta_n = \frac{1}{1 + \frac{2}{5}n}$

$$\begin{cases} M_{N+1} = \frac{5MN}{2MN+5} \\ M_0 = 1 \end{cases}$$

Pistes de résolution

- 1. b. Les premiers termes font-ils apparaître une relation de récurrence d'une suite arithmétique?
- **2.** a. Exprimer v_{n+1} en fonction de v_n , puis conclure.
- b. Compte tenu de la nature de (v_n), on dispose d'une formule pour exprimer son terme général. Le lien entre les suites (v_n) et (u_n) permet d'obtenir le terme général de (u_n) .

$$= \frac{5 \times \frac{5}{x}}{2 \times \frac{5}{x} + 5} = \frac{5}{9}$$
 Void la suite extauthm.

2. a. Pour tout entier $n \ge 0$,

$$\frac{1}{\sqrt{1 + 1} - v_n} = \frac{1}{u_{n+1}} - \frac{1}{u_n}$$

$$= \frac{2u_n + 5}{5u_n} - \frac{1}{u_n}$$

$$= \frac{2u_n + 5}{5u_n} - \frac{5}{5u_n}$$

$$= \frac{2u_n}{5u_n}$$

$$\frac{2u_n}{5u_n}$$

$$\frac{2u_n}{5u_n}$$

(Vn) est oxistmetique de noison $R = \frac{2}{5}$ et de premier teure $V_0 = \frac{2}{10}$

La forme explicite de (Vn) est duc Ynen, Vn = Vo+nxn

$$7 = 1 + \frac{2}{5}n$$

$$L_1 = \frac{2}{1+10} = \frac{2}{4+3} = \frac{1}{2}$$

$$\mu_1 = \frac{2}{1+\mu_0} = \frac{2}{1+3} = \frac{1}{2}$$

$$\mu_1 = \frac{2}{1+\frac{2}{4}} = \frac{2}{\frac{3}{2}} = 2 \times \frac{2}{3} = \frac{4}{3}$$

💯 Exercice guidé – Une suite homographique On considère la suite u définie sur \mathbb{N} par $u_0 = 3$ et, pour tout entier n, $u_{n+1} = \frac{2}{1+u_n}$.

- 1. À l'aide de la calculatrice, conjecturer le sens de variation de cette suite et sa limite éventuelle.
- Calculer u₁ et u₂. Cette suite est-elle arithmétique ? Est-elle géométrique ? Justifier.
- On admet que u est positive et on considère la suite v définie sur № par :

Since
$$v_n = 1 - \frac{3}{u_n + 2} (\star)$$

 Calculer les premiers termes de v puis conjecturer la nature de la suite v. Démontrer cette conjecture.

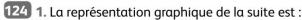
- b. En déduire une expression de v_n en fonction de n.
- c. Justifier que pour tout $n \in \mathbb{N}$:

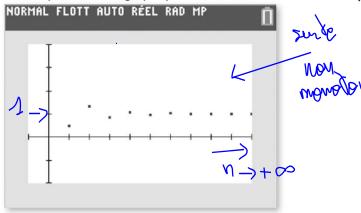
Some plice
$$u_n = \frac{3}{1 - v_n} - 2$$

En déduire une expression de v_n en fonction de n. Justifier alors que u bien une suite convergente.

Pistes de résolution

- 3. a. Pour montrer que v est géométrique, on calcule, pour tout $n \in \mathbb{N}$, l'expression de v_{n+1} en fonction de u,, puis on exploite la relation de récurrence de u. L'objectif à terme est d'aboutir à une relation du type
- $v_{n+1} = q \times v_n$ où q est la constante conjecturée.
- 3.b. Vu que v est géométrique, on sait exprimer son terme général v_n en fonction de v_n et n.
- c. On peut ici facilement isoler u dans (*).





Pour tout $n \in \mathbb{N}$,

$$v_{n+1} = 1 - \frac{3}{u_{n+1} + 2}$$

$$\Leftrightarrow v_{n+1} = 1 - \frac{3}{\frac{2}{1 + u_n} + 2}$$

$$\Leftrightarrow v_{n+1} = 1 - \frac{3}{\frac{2}{1 + u_n} + \frac{2(1 + u_n)}{1 + u_n}}$$

$$\Leftrightarrow v_{n+1} = 1 - \frac{3}{\frac{4 + 2u_n}{1 + u_n}}$$

$$\Leftrightarrow v_{n+1} = 1 - 3 \times \frac{1 + u_n}{4 + 2u_n}$$

$$\Leftrightarrow v_{n+1} = \frac{4 + 2u_n}{4 + 2u_n} - \frac{3 + 3u_n}{4 + 2u_n}$$

$$\Leftrightarrow v_{n+1} = \frac{1 - u_n}{4 + 2u_n}$$

On peut conjecturer que cette suite n'est pas monotone mais semble converger vers 1.

2.
$$u_1 = \frac{1}{2}$$
 et $u_2 = \frac{4}{3}$.

- $(u_2 u_1 \neq u_1 u_0)$ donc la suite n'est pas arithmétique.
- $\frac{u_2}{u_1} \neq \frac{u_1}{u_0}$ donc la suite n'est pas géométrique.

3. a.
$$v_0 = \frac{2}{5}$$
; $v_1 = -\frac{1}{5}$; $v_2 = \frac{1}{10}$

On peut conjecturer que la suite est géométrique de raison

$$V_{N+1} = V_N \times \left(\frac{1}{L}\right)$$

from and are sinde so

Or
$$-\frac{1}{2}v_n = -\frac{1}{2}\left(1 - \frac{3}{u_n + 2}\right) = -\frac{1}{2} + \frac{3}{2u_n + 4}$$
$$= -\frac{u_n + 2}{2u_n + 4} + \frac{3}{2u_n + 4} = \frac{-u_n + 1}{2u_n + 4}$$

Ainsi $v_{n+1} = -\frac{1}{2}v_n$.

Donc la suite (v_n) est géométrique de raison $q = -\frac{1}{2}$ et de terme initial $v_n = -\frac{2}{2}$ terme initial $v_0 = \frac{2}{5}$.

MEIN Un+1 = NOW